Skip to content

sgnl.sort_bank

Sort and group svd banks and time slices by sample rates.

SortedBank

Sort and group svd banks and time slices by sample rate

Source code in sgnl/sort_bank.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
class SortedBank:
    """
    Sort and group svd banks and time slices by sample rate
    """

    def __init__(
        self,
        banks,
        device="cpu",
        dtype=torch.float16,
        memory_format=torch.contiguous_format,
        nsubbank_pretend=0,
        nslice=-1,
        verbose=False,
    ):
        self.device = device
        self.dtype = dtype
        self.memory_format = memory_format
        self.verbose = verbose

        temp = torch.empty(1, dtype=dtype)
        self.cdtype = torch.complex(temp, temp).dtype
        self.nsubbank_pretend = nsubbank_pretend

        self.bank_metadata, self.reordered_bank = self.prepare_metadata(banks)
        # Prepare tensors for LLOID methods
        (
            self.coeff_sv_cat,
            self.bases_cat,
            self.template_ids,
            self.end_time_delta,
            self.subbankids,
            self.bankids_map,
            self.sngls,
            self.autocorrelation_banks,
            self.processed_psd,
            self.horizon_distance_funcs,
        ) = self.prepare_tensors(self.bank_metadata, self.reordered_bank)

        del self.reordered_bank
        del banks

    def prepare_metadata(self, bank):
        """
        Determine rates and template properties across subbanks

        bank_metadata.keys() = ['ifos', 'nifo', 'nsubbank', 'maxrate', 'unique_rates',
        'nrates', 'nfilter_samples', 'ntempmax', 'delay_per_rate', 'sorted_rates']

        Arguments:
        ----------
        bank:
            gstlal Bank class
        """
        bank_metadata = {}
        ifos = list(bank.keys())
        bank_metadata["ifos"] = ifos
        bank_metadata["nifo"] = len(ifos)

        # assume all ifos have same banks
        bank0 = bank[ifos[0]]

        nsubbank = len(bank0)  # number of subbanks in each ifo
        bank_metadata["nsubbank"] = nsubbank

        # determine some properties across banks
        # determine rates
        maxrate = bank0[0].sample_rate_max
        bank_metadata["maxrate"] = maxrate  # assume same for all banks
        unique_rates = dict(
            sorted(
                Counter([bi.rate for b in bank0 for bi in b.bank_fragments]).items(),
                reverse=True,
            )
        )
        bank_metadata["unique_rates"] = unique_rates
        bank_metadata["nrates"] = len(unique_rates)

        # number of samples in each filter, assume it's the same for all templates
        bank_metadata["nfilter_samples"] = (
            bank0[0].bank_fragments[0].orthogonal_template_bank.shape[1]
        )

        # maximum number of templates across all subbanks
        bank_metadata["ntempmax"] = max(
            sub.bank_fragments[0].mix_matrix.shape[1] for sub in bank0
        )
        delay_per_rate = dict.fromkeys(unique_rates.keys())
        for rate in unique_rates:
            delay_per_rate[rate] = max(
                int(bf.start * rate)
                for banki in bank.values()
                for sub in banki
                for bf in sub.bank_fragments
                if rate == bf.rate
            )
        bank_metadata["delay_per_rate"] = delay_per_rate

        sorted_rates, reordered_bank = self.sort_bank_by_rates(bank, bank_metadata)
        bank_metadata["sorted_rates"] = sorted_rates

        return bank_metadata, reordered_bank

    def sort_bank_by_rates(self, bank, bank_metadata):
        """
        Determine the ids to upsample from rate1 to rate2
        This places templates that need to be upsampled from and to
            the same rate next to each other, which allows the templates
            to be upsampled together and allows a simpler slicing method
        The following example shows id placement
        slice  | 0  | 1   |  2 |  3 |
        -----------------------------
        bank0: [2048, 1024, 512, 512]
        bank1: [2048, 1024, 512, 256]
        bank2: [2048,  512, 256]

        bases[sample_rate][upsample_rate]:

        bases[2048][()]
            = [bank0slice0, bank1slice0, bank2slice0]
        bases[1024][(2048,)]
            = [bank0slice1, bank1slice1]
        bases[512][(2048, 1024)]
            = [bank0slice2, bank0slice3, bank1slice2]
            # templates in the same bank will be placed next to each other,
                to allow more convenient summing in sum_same_rates()

        bases[512][(2048,)]
            = [bank2slice1]
        bases[256][(2048, 1024, 512)]
            = [bank1slice3]
        bases[256][(2048, 512)]
            = [bank2slice2]

        * The reason that bases[512][(2048, 1024)] is in a different group than
            bases[512][(2048,)] is because they will go into different upsamplers
        * The reason that bases[256][(2048, 1024, 512)] is in a different group
            than bases[256][(2048, 512)], even though they are upsampling to the
            same rate (512), is because due to the different upsampling path
            256->512->1024->2048 vs. 256->512->2048, the time stamps of the buffers
            will be different (to account for the upsampling padding)

        ----------

        sorted_rates = {
            from_rate: {
                to_rate: {
                    '_ids_counter':,
                    '_addto_counter':,
                    '_addids':,
                    'counts':,
                    'nbmax':,
                    'ntempmax':,
                    'segments':,
                    'sum_same_rate_slices':,
                    'uppad':,
                    'addslice':,
                    'metadata': {
                         bank_order: {
                             'ids':,'nslice':,
                         }
                    },
                }
            }
        }

        """

        ifos = bank_metadata["ifos"]
        bank0 = bank[ifos[0]]
        nsubbank = len(bank0)  # number of subbanks in each ifo
        unique_rates = bank_metadata["unique_rates"]
        maxrate = bank_metadata["maxrate"]

        #
        # Sort the unique rates, this might alter the order of the template banks
        #
        sorted_unique_rates0 = []
        unique_rates_by_bank = []
        for j in range(nsubbank):
            bk = bank0[j]
            if self.nsubbank_pretend:
                bankid = bk.bank_id + "_" + str(j)
            else:
                bankid = bk.bank_id
            unique_rates0 = dict(
                sorted(
                    Counter([bi.rate for bi in bk.bank_fragments]).items(), reverse=True
                )
            )
            unique_rates_by_bank.append(tuple(unique_rates0.keys()))
            # for key in unique_rates:
            #    if key not in unique_rates0:
            #        unique_rates0[key] = 0
            unique_rates0["bankid"] = bankid
            sorted_unique_rates0.append(unique_rates0)

        # sorted_unique_rates = sorted(
        #    # sorted_unique_rates, key=lambda x: x.keys(), reverse=True
        #    sorted_unique_rates,
        #    key=operator.itemgetter(*list(unique_rates.keys())),
        #    reverse=True,
        # )

        unique_rates_by_bank = sorted(set(unique_rates_by_bank), reverse=True)
        sorted_unique_rates = []

        for urb in unique_rates_by_bank:
            for s in sorted_unique_rates0:
                s2 = list(s.keys())
                s2.remove("bankid")
                if list(urb) == s2 and s not in sorted_unique_rates:
                    sorted_unique_rates.append(s)

        # if self.nsubbank_pretend:
        #    sorted_unique_rates *= self.nsubbank_pretend

        if self.verbose:
            print("sorted_unique_rates", flush=True, file=sys.stderr)
            for a in sorted_unique_rates:
                print(a, flush=True, file=sys.stderr)

        # check if nsubbank_pretend is true
        # bankids = [a["bankid"] for a in sorted_unique_rates]
        # nsubbank_pretend = False
        # if len(bankids) > 1 and len(set(bankids)) == 1:
        #    if self.verbose:
        #        print("nsubbank_pretend", flush=True, file=sys.stderr)
        #    nsubbank_pretend = True

        # reorder bankid
        bankid_order = {}
        for i, a in enumerate(sorted_unique_rates):
            bankid = a["bankid"]
            bankid_order[bankid] = i

        reorder = {}
        # reordered bank
        if self.nsubbank_pretend == 0:
            for ifo in ifos:
                reorder[ifo] = {}
                for j in range(nsubbank):
                    bk = bank[ifo][j]
                    bankid = bk.bank_id
                    order = bankid_order[bankid]
                    reorder[ifo][order] = bk
        else:
            if self.verbose:
                print("nsubbank_pretend", flush=True, file=sys.stderr)
            for ifo in ifos:
                reorder[ifo] = {i: b for i, b in enumerate(bank[ifo])}

        #
        # Construct sorted_rates, determine id placement of timeslices
        #
        sorted_rates = defaultdict(dict)
        addto_ids = {}
        for a in sorted_unique_rates:
            temp = {}
            for from_rate in unique_rates:
                from_bank = sorted_rates[from_rate]
                bankid = a["bankid"]
                k = list(a.keys())
                if from_rate in k and a[from_rate] > 0:
                    to_rate = tuple(
                        ki
                        for ki in k
                        if type(ki) is int and ki > from_rate and a[ki] > 0
                    )
                    if to_rate not in from_bank:
                        from_bank[to_rate] = {
                            "_ids_counter": 0,
                            "_addto_counter": 0,
                            "_addids": [],
                            "counts": 0,
                            "nbmax": [],
                            "ntempmax": [],
                            "segments": [],
                            "sum_same_rate_slices": None,
                            "metadata": {},
                        }
                    to_bank = from_bank[to_rate]
                    if from_rate != maxrate:
                        to_bank["counts"] += a[from_rate]
                    temp[from_rate] = to_bank["_addto_counter"]
                    to_bank["_addto_counter"] += 1
            addto_ids[bankid] = temp

        # find the ids each bank should addto after upsampling
        # FIXME: is there a more elegant way?
        for _bankid, a in addto_ids.items():
            for from_rate in unique_rates:
                from_bank = sorted_rates[from_rate]
                k = list(a.keys())
                if from_rate in k:
                    to_rate = tuple(
                        ki for ki in k if type(ki) is int and ki > from_rate
                    )
                    if from_rate != maxrate:
                        from_bank[to_rate]["_addids"].append(a[to_rate[-1]])

        sorted_rates[maxrate][()]["counts"] = nsubbank

        urates = list(unique_rates.keys())
        downpads = {r: None for r in urates}
        downpad = 0
        downpads[2048] = 0
        for urate in urates[1:]:
            downpad += Offset.fromsamples(DOWN_HALF_LENGTH, urate)
            downpads[urate] = downpad

        # loop over all subbanks and update metadata in each rate group
        for j in range(nsubbank):
            bk = reorder[ifos[0]][j]
            rates = [bf.rate for bf in bk.bank_fragments]
            # urates = np.array(sorted(set(rates), reverse=True))
            urates = list(sorted(set(rates), reverse=True))
            urs = urates[1:]
            # uppad = {
            # #r0: sum(Offset.fromsamples(UP_HALF_LENGTH, ri) for ri in urs[urs >= r0])
            # r0: sum([Offset.fromsamples(UP_HALF_LENGTH, ri) for ri in urs[urs >= r0]])
            # for r0 in urs
            # }
            uppads = {r: None for r in urates}
            uppad = 0
            uppads[maxrate] = 0
            for ri in urs:
                uppad += Offset.fromsamples(UP_HALF_LENGTH, ri)
                uppads[ri] = uppad

            for bi, bf in enumerate(bk.bank_fragments):
                rate = bf.rate
                to_rate = tuple(r for r in urates if r > rate)
                rate_group = sorted_rates[rate][to_rate]
                if j not in rate_group["metadata"]:
                    rate_group["metadata"][j] = {
                        "ids": [],
                        "nslice": [],
                    }
                mdata = rate_group["metadata"][j]
                mdata["bankid"] = bk.bank_id
                mdata["nslice"].append(bi)
                rate_group["uppad"] = uppads[rate]
                rate_group["downpad"] = downpads[rate]
                rate_group["shift"] = uppads[rate] + downpads[rate]
                rate_group["segments"].append((bf.start, bf.end))
                if rate != maxrate:
                    if rate == rates[bi - 1]:
                        mdata["ids"].append(rate_group["_ids_counter"])
                        rate_group["_ids_counter"] += 1
                        if len(mdata["ids"]) > 1:
                            rate_group["sum_same_rate_slices"] = []
                    else:
                        mdata["ids"].append(rate_group["_ids_counter"])
                        rate_group["_ids_counter"] += 1
                else:
                    mdata["ids"] = [j]

        for ifo in ifos:
            for j in range(nsubbank):
                bk = reorder[ifo][j]
                rates = [bf.rate for bf in bk.bank_fragments]
                for bf in bk.bank_fragments:
                    rate = bf.rate
                    urates = np.array(sorted(set(rates), reverse=True))
                    to_rate = tuple(r for r in urates if r > rate)
                    rate_group = sorted_rates[rate][to_rate]
                    rate_group["nbmax"].append(bf.mix_matrix.shape[0])
                    rate_group["ntempmax"].append(bf.mix_matrix.shape[1])

        for from_rate, v in sorted_rates.items():
            for _to_rate, rate_group in v.items():
                if from_rate != maxrate:
                    addids = rate_group["_addids"]
                    rate_group["addslice"] = slice(addids[0], addids[-1] + 1)
                rate_group["nbmax"] = max(rate_group["nbmax"])
                rate_group["ntempmax"] = max(rate_group["ntempmax"])
                mdata = rate_group["metadata"]
                if rate_group["sum_same_rate_slices"] is not None:
                    for md in mdata.values():
                        ids = md["ids"]
                        rate_group["sum_same_rate_slices"].append(
                            slice(ids[0], ids[-1] + 1)
                        )

        return sorted_rates, reorder

    def prepare_tensors(self, bank_metadata, reordered_bank):
        """
        Prepare large tensors to store input and output of methods in LLOID
        coeff_sv:      all the coeff_sv from different banks
        bases:         all the bases from different banks
        """
        print(
            "Preparing tensors for LLOID methods...",
            end="",
            flush=True,
            file=sys.stderr,
        )

        dtype = self.dtype
        device = self.device

        ifos = bank_metadata["ifos"]
        nfilter_samples = bank_metadata["nfilter_samples"]
        nsubbank = bank_metadata["nsubbank"]
        sorted_rates = bank_metadata["sorted_rates"]

        # outputs
        bases_by_rate = {
            r1: {r2: {} for r2 in rb.keys()} for r1, rb in sorted_rates.items()
        }
        coeff_sv_by_rate = {
            r1: {r2: {} for r2 in rb.keys()} for r1, rb in sorted_rates.items()
        }

        # construct big tensors of data, bases, and coeff_sv, grouped by sample rates
        for from_rate, rbr in sorted_rates.items():
            for to_rate, rate_group in rbr.items():
                count = rate_group["counts"]
                mdata = rate_group["metadata"]
                nbm = rate_group["nbmax"]
                ntempmax = rate_group["ntempmax"]

                for ifo in ifos:

                    # group the bases by sample rate
                    bases_by_rate[from_rate][to_rate][ifo] = torch.zeros(
                        size=(count, nbm, nfilter_samples),
                        device=device,
                        dtype=dtype,
                    )

                    # group the coeff by sample rate
                    coeff_sv_by_rate[from_rate][to_rate][ifo] = torch.zeros(
                        size=(count, ntempmax, nbm),
                        device=device,
                        dtype=dtype,
                    )

                    # fill in the bases and coeff tensors!
                    # for k, ifo in enumerate(ifos):
                    bifo = reordered_bank[ifo]
                    for bank_order, md in mdata.items():
                        bifo_order = bifo[bank_order]
                        ids = md["ids"]
                        nslices = md["nslice"]
                        for id0, nslice in zip(ids, nslices):
                            this_slice = bifo_order.bank_fragments[nslice]
                            assert this_slice.rate == from_rate
                            b = this_slice.orthogonal_template_bank
                            c = this_slice.mix_matrix.T
                            bases_by_rate[from_rate][to_rate][ifo][
                                id0, : b.shape[0], :
                            ] = torch.tensor(b, device=device, dtype=dtype)
                            coeff_sv_by_rate[from_rate][to_rate][ifo][
                                id0, : c.shape[0], : c.shape[1]
                            ] = torch.tensor(c, device=device, dtype=dtype)
                bases = bases_by_rate[from_rate][to_rate][ifo].view(
                    -1,
                    nfilter_samples,
                )
                bases = (
                    bases.unsqueeze(1).unsqueeze(0).to(memory_format=self.memory_format)
                )
                bases_by_rate[from_rate][to_rate][ifo] = bases.view(
                    count, nbm, nfilter_samples
                )
                # benchmark conv methods
                rate_group["conv_group"] = True
                """
                if self.device == "cpu":
                    rb["conv_group"] = True
                else:
                    if self.verbose:
                        print("Benchmarking conv...", flush=True, file=sys.stderr)
                    tgroup = benchmark.Timer(
                        stmt="SNRSlices.conv_group(mask, data, nbm, basesr)",
                        setup="from greg.filtering.snr_slices import SNRSlices",
                        globals={
                            "mask": [True] * nifo,
                            "data": data_by_rate[from_rate][to_rate],
                            "nbm": nbm,
                            "basesr": bases_by_rate[from_rate][to_rate],
                        },
                    )

                    tgroupm = tgroup.timeit(500).median

                    tloop = benchmark.Timer(
                        stmt="SNRSlices.conv_loop(mask, data, nbm, basesr)",
                        setup="from greg.filtering.snr_slices import SNRSlices",
                        globals={
                            "mask": [True] * nifo,
                            "data": data_by_rate[from_rate][to_rate],
                            "nbm": nbm,
                            "basesr": bases_by_rate[from_rate][to_rate],
                        },
                    )

                    tloopm = tloop.timeit(500).median

                    if self.verbose:
                        print(
                            f"{from_rate=} {to_rate=}",
                            "conv_group",
                            tgroupm,
                            "conv_loop",
                            tloopm,
                            flush=True,
                            file=sys.stderr,
                        )
                    if tgroupm < tloopm:
                        rb["conv_group"] = True
                    else:
                        rb["conv_group"] = False
                """

        # Get template ids
        #   Assume same ids for all ifos for the same bank
        #   Init template ids as -1 for banks with ntemp < ntempmax,
        #   the template id for empty entries will be -1
        ntempmax = bank_metadata["ntempmax"]
        template_ids = (
            torch.ones(size=(nsubbank, ntempmax // 2), dtype=torch.int32) * -1
        )
        subbankids = []
        sngls = []
        end_time_delta = torch.zeros(size=(nsubbank,), dtype=torch.long)
        bankids_map = defaultdict(list)
        horizon_distance_funcs = {}
        for j in range(nsubbank):
            sngl = reordered_bank[ifos[0]][j].sngl_inspiral_table
            template_ids0 = torch.tensor([row.template_id for row in sngl])
            template_ids[j, : template_ids0.shape[0]] = template_ids0

            ends0 = [row.end.ns() for row in sngl]
            assert len(set(ends0)) == 1, "there are different end times in a subbank"
            end_time_delta[j] = list(set(ends0))[0]

            subbank_id = reordered_bank[ifos[0]][j].bank_id
            if self.nsubbank_pretend:
                bank_id = subbank_id.split("_")[0] + "_" + str(j)
            else:
                bank_id = subbank_id.split("_")[0]
            horizon_distance_funcs[bank_id] = reordered_bank[ifos[0]][
                j
            ].horizon_distance_func
            subbankids.append(subbank_id)
            bankids_map[bank_id].append(j)
            sngl0 = {row.template_id: row for row in sngl}
            sngls.append(sngl0)

        # Write out single inspiral table
        # sngl0 = reordered_bank[ifos[0]][0].sngl_inspiral_table
        # row = sngl0[0]
        # keys = [a for a in dir(row) if not a.startswith('__') and not
        #           callable(getattr(row, a))]
        # import h5py
        # with h5py.File('sngl_inspiral_table.h5', "a") as f:
        #    for j in range(nsubbank):
        #        sngl = reordered_bank[ifos[0]][j].sngl_inspiral_table
        #        for row in sngl:
        #            group = str(row.template_id)
        #            f.create_group(group)
        #            for k in keys:
        #                v = getattr(row, k)
        #                if k == 'end':
        #                    v = float(v)
        #                f[group][k] = v

        # Trigger generator
        # Get the autocorrelation_bank
        max_acl = max(
            reordered_bank[ifo][j].autocorrelation_bank.shape[1]
            for i, ifo in enumerate(ifos)
            for j in range(nsubbank)
        )
        autocorrelation_banks = {}
        for ifo in ifos:
            autocorrelation_banks[ifo] = torch.zeros(
                size=(nsubbank, ntempmax // 2, max_acl),
                device=device,
                dtype=self.cdtype,
            )
        for ifo in ifos:
            for j in range(nsubbank):
                acorr = reordered_bank[ifo][j].autocorrelation_bank

                # this is for adjusting to the bank used for impulse test
                if acorr.shape[0] > ntempmax // 2:
                    acorr = acorr[: ntempmax // 2]
                autocorrelation_banks[ifo][j, : acorr.shape[0], : acorr.shape[1]] = (
                    torch.tensor(acorr)
                )

        processed_psd = dict(
            [(ifo, b[0].processed_psd) for ifo, b in reordered_bank.items()]
        )

        print(" Done.", flush=True, file=sys.stderr)

        return (
            coeff_sv_by_rate,
            bases_by_rate,
            template_ids,
            end_time_delta,
            subbankids,
            bankids_map,
            sngls,
            autocorrelation_banks,
            processed_psd,
            horizon_distance_funcs,
        )

prepare_metadata(bank)

Determine rates and template properties across subbanks

bank_metadata.keys() = ['ifos', 'nifo', 'nsubbank', 'maxrate', 'unique_rates', 'nrates', 'nfilter_samples', 'ntempmax', 'delay_per_rate', 'sorted_rates']

Arguments:

bank: gstlal Bank class

Source code in sgnl/sort_bank.py
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def prepare_metadata(self, bank):
    """
    Determine rates and template properties across subbanks

    bank_metadata.keys() = ['ifos', 'nifo', 'nsubbank', 'maxrate', 'unique_rates',
    'nrates', 'nfilter_samples', 'ntempmax', 'delay_per_rate', 'sorted_rates']

    Arguments:
    ----------
    bank:
        gstlal Bank class
    """
    bank_metadata = {}
    ifos = list(bank.keys())
    bank_metadata["ifos"] = ifos
    bank_metadata["nifo"] = len(ifos)

    # assume all ifos have same banks
    bank0 = bank[ifos[0]]

    nsubbank = len(bank0)  # number of subbanks in each ifo
    bank_metadata["nsubbank"] = nsubbank

    # determine some properties across banks
    # determine rates
    maxrate = bank0[0].sample_rate_max
    bank_metadata["maxrate"] = maxrate  # assume same for all banks
    unique_rates = dict(
        sorted(
            Counter([bi.rate for b in bank0 for bi in b.bank_fragments]).items(),
            reverse=True,
        )
    )
    bank_metadata["unique_rates"] = unique_rates
    bank_metadata["nrates"] = len(unique_rates)

    # number of samples in each filter, assume it's the same for all templates
    bank_metadata["nfilter_samples"] = (
        bank0[0].bank_fragments[0].orthogonal_template_bank.shape[1]
    )

    # maximum number of templates across all subbanks
    bank_metadata["ntempmax"] = max(
        sub.bank_fragments[0].mix_matrix.shape[1] for sub in bank0
    )
    delay_per_rate = dict.fromkeys(unique_rates.keys())
    for rate in unique_rates:
        delay_per_rate[rate] = max(
            int(bf.start * rate)
            for banki in bank.values()
            for sub in banki
            for bf in sub.bank_fragments
            if rate == bf.rate
        )
    bank_metadata["delay_per_rate"] = delay_per_rate

    sorted_rates, reordered_bank = self.sort_bank_by_rates(bank, bank_metadata)
    bank_metadata["sorted_rates"] = sorted_rates

    return bank_metadata, reordered_bank

prepare_tensors(bank_metadata, reordered_bank)

Prepare large tensors to store input and output of methods in LLOID coeff_sv: all the coeff_sv from different banks bases: all the bases from different banks

Source code in sgnl/sort_bank.py
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
def prepare_tensors(self, bank_metadata, reordered_bank):
    """
    Prepare large tensors to store input and output of methods in LLOID
    coeff_sv:      all the coeff_sv from different banks
    bases:         all the bases from different banks
    """
    print(
        "Preparing tensors for LLOID methods...",
        end="",
        flush=True,
        file=sys.stderr,
    )

    dtype = self.dtype
    device = self.device

    ifos = bank_metadata["ifos"]
    nfilter_samples = bank_metadata["nfilter_samples"]
    nsubbank = bank_metadata["nsubbank"]
    sorted_rates = bank_metadata["sorted_rates"]

    # outputs
    bases_by_rate = {
        r1: {r2: {} for r2 in rb.keys()} for r1, rb in sorted_rates.items()
    }
    coeff_sv_by_rate = {
        r1: {r2: {} for r2 in rb.keys()} for r1, rb in sorted_rates.items()
    }

    # construct big tensors of data, bases, and coeff_sv, grouped by sample rates
    for from_rate, rbr in sorted_rates.items():
        for to_rate, rate_group in rbr.items():
            count = rate_group["counts"]
            mdata = rate_group["metadata"]
            nbm = rate_group["nbmax"]
            ntempmax = rate_group["ntempmax"]

            for ifo in ifos:

                # group the bases by sample rate
                bases_by_rate[from_rate][to_rate][ifo] = torch.zeros(
                    size=(count, nbm, nfilter_samples),
                    device=device,
                    dtype=dtype,
                )

                # group the coeff by sample rate
                coeff_sv_by_rate[from_rate][to_rate][ifo] = torch.zeros(
                    size=(count, ntempmax, nbm),
                    device=device,
                    dtype=dtype,
                )

                # fill in the bases and coeff tensors!
                # for k, ifo in enumerate(ifos):
                bifo = reordered_bank[ifo]
                for bank_order, md in mdata.items():
                    bifo_order = bifo[bank_order]
                    ids = md["ids"]
                    nslices = md["nslice"]
                    for id0, nslice in zip(ids, nslices):
                        this_slice = bifo_order.bank_fragments[nslice]
                        assert this_slice.rate == from_rate
                        b = this_slice.orthogonal_template_bank
                        c = this_slice.mix_matrix.T
                        bases_by_rate[from_rate][to_rate][ifo][
                            id0, : b.shape[0], :
                        ] = torch.tensor(b, device=device, dtype=dtype)
                        coeff_sv_by_rate[from_rate][to_rate][ifo][
                            id0, : c.shape[0], : c.shape[1]
                        ] = torch.tensor(c, device=device, dtype=dtype)
            bases = bases_by_rate[from_rate][to_rate][ifo].view(
                -1,
                nfilter_samples,
            )
            bases = (
                bases.unsqueeze(1).unsqueeze(0).to(memory_format=self.memory_format)
            )
            bases_by_rate[from_rate][to_rate][ifo] = bases.view(
                count, nbm, nfilter_samples
            )
            # benchmark conv methods
            rate_group["conv_group"] = True
            """
            if self.device == "cpu":
                rb["conv_group"] = True
            else:
                if self.verbose:
                    print("Benchmarking conv...", flush=True, file=sys.stderr)
                tgroup = benchmark.Timer(
                    stmt="SNRSlices.conv_group(mask, data, nbm, basesr)",
                    setup="from greg.filtering.snr_slices import SNRSlices",
                    globals={
                        "mask": [True] * nifo,
                        "data": data_by_rate[from_rate][to_rate],
                        "nbm": nbm,
                        "basesr": bases_by_rate[from_rate][to_rate],
                    },
                )

                tgroupm = tgroup.timeit(500).median

                tloop = benchmark.Timer(
                    stmt="SNRSlices.conv_loop(mask, data, nbm, basesr)",
                    setup="from greg.filtering.snr_slices import SNRSlices",
                    globals={
                        "mask": [True] * nifo,
                        "data": data_by_rate[from_rate][to_rate],
                        "nbm": nbm,
                        "basesr": bases_by_rate[from_rate][to_rate],
                    },
                )

                tloopm = tloop.timeit(500).median

                if self.verbose:
                    print(
                        f"{from_rate=} {to_rate=}",
                        "conv_group",
                        tgroupm,
                        "conv_loop",
                        tloopm,
                        flush=True,
                        file=sys.stderr,
                    )
                if tgroupm < tloopm:
                    rb["conv_group"] = True
                else:
                    rb["conv_group"] = False
            """

    # Get template ids
    #   Assume same ids for all ifos for the same bank
    #   Init template ids as -1 for banks with ntemp < ntempmax,
    #   the template id for empty entries will be -1
    ntempmax = bank_metadata["ntempmax"]
    template_ids = (
        torch.ones(size=(nsubbank, ntempmax // 2), dtype=torch.int32) * -1
    )
    subbankids = []
    sngls = []
    end_time_delta = torch.zeros(size=(nsubbank,), dtype=torch.long)
    bankids_map = defaultdict(list)
    horizon_distance_funcs = {}
    for j in range(nsubbank):
        sngl = reordered_bank[ifos[0]][j].sngl_inspiral_table
        template_ids0 = torch.tensor([row.template_id for row in sngl])
        template_ids[j, : template_ids0.shape[0]] = template_ids0

        ends0 = [row.end.ns() for row in sngl]
        assert len(set(ends0)) == 1, "there are different end times in a subbank"
        end_time_delta[j] = list(set(ends0))[0]

        subbank_id = reordered_bank[ifos[0]][j].bank_id
        if self.nsubbank_pretend:
            bank_id = subbank_id.split("_")[0] + "_" + str(j)
        else:
            bank_id = subbank_id.split("_")[0]
        horizon_distance_funcs[bank_id] = reordered_bank[ifos[0]][
            j
        ].horizon_distance_func
        subbankids.append(subbank_id)
        bankids_map[bank_id].append(j)
        sngl0 = {row.template_id: row for row in sngl}
        sngls.append(sngl0)

    # Write out single inspiral table
    # sngl0 = reordered_bank[ifos[0]][0].sngl_inspiral_table
    # row = sngl0[0]
    # keys = [a for a in dir(row) if not a.startswith('__') and not
    #           callable(getattr(row, a))]
    # import h5py
    # with h5py.File('sngl_inspiral_table.h5', "a") as f:
    #    for j in range(nsubbank):
    #        sngl = reordered_bank[ifos[0]][j].sngl_inspiral_table
    #        for row in sngl:
    #            group = str(row.template_id)
    #            f.create_group(group)
    #            for k in keys:
    #                v = getattr(row, k)
    #                if k == 'end':
    #                    v = float(v)
    #                f[group][k] = v

    # Trigger generator
    # Get the autocorrelation_bank
    max_acl = max(
        reordered_bank[ifo][j].autocorrelation_bank.shape[1]
        for i, ifo in enumerate(ifos)
        for j in range(nsubbank)
    )
    autocorrelation_banks = {}
    for ifo in ifos:
        autocorrelation_banks[ifo] = torch.zeros(
            size=(nsubbank, ntempmax // 2, max_acl),
            device=device,
            dtype=self.cdtype,
        )
    for ifo in ifos:
        for j in range(nsubbank):
            acorr = reordered_bank[ifo][j].autocorrelation_bank

            # this is for adjusting to the bank used for impulse test
            if acorr.shape[0] > ntempmax // 2:
                acorr = acorr[: ntempmax // 2]
            autocorrelation_banks[ifo][j, : acorr.shape[0], : acorr.shape[1]] = (
                torch.tensor(acorr)
            )

    processed_psd = dict(
        [(ifo, b[0].processed_psd) for ifo, b in reordered_bank.items()]
    )

    print(" Done.", flush=True, file=sys.stderr)

    return (
        coeff_sv_by_rate,
        bases_by_rate,
        template_ids,
        end_time_delta,
        subbankids,
        bankids_map,
        sngls,
        autocorrelation_banks,
        processed_psd,
        horizon_distance_funcs,
    )

sort_bank_by_rates(bank, bank_metadata)

Determine the ids to upsample from rate1 to rate2 This places templates that need to be upsampled from and to the same rate next to each other, which allows the templates to be upsampled together and allows a simpler slicing method The following example shows id placement slice | 0 | 1 | 2 | 3 |


bank0: [2048, 1024, 512, 512] bank1: [2048, 1024, 512, 256] bank2: [2048, 512, 256]

bases[sample_rate][upsample_rate]:

bases[2048][()] = [bank0slice0, bank1slice0, bank2slice0] bases[1024][(2048,)] = [bank0slice1, bank1slice1] bases[512][(2048, 1024)] = [bank0slice2, bank0slice3, bank1slice2] # templates in the same bank will be placed next to each other, to allow more convenient summing in sum_same_rates()

bases[512][(2048,)] = [bank2slice1] bases[256][(2048, 1024, 512)] = [bank1slice3] bases[256][(2048, 512)] = [bank2slice2]

  • The reason that bases[512][(2048, 1024)] is in a different group than bases[512][(2048,)] is because they will go into different upsamplers
  • The reason that bases[256][(2048, 1024, 512)] is in a different group than bases[256][(2048, 512)], even though they are upsampling to the same rate (512), is because due to the different upsampling path 256->512->1024->2048 vs. 256->512->2048, the time stamps of the buffers will be different (to account for the upsampling padding)

sorted_rates = { from_rate: { to_rate: { '_ids_counter':, '_addto_counter':, '_addids':, 'counts':, 'nbmax':, 'ntempmax':, 'segments':, 'sum_same_rate_slices':, 'uppad':, 'addslice':, 'metadata': { bank_order: { 'ids':,'nslice':, } }, } } }

Source code in sgnl/sort_bank.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
def sort_bank_by_rates(self, bank, bank_metadata):
    """
    Determine the ids to upsample from rate1 to rate2
    This places templates that need to be upsampled from and to
        the same rate next to each other, which allows the templates
        to be upsampled together and allows a simpler slicing method
    The following example shows id placement
    slice  | 0  | 1   |  2 |  3 |
    -----------------------------
    bank0: [2048, 1024, 512, 512]
    bank1: [2048, 1024, 512, 256]
    bank2: [2048,  512, 256]

    bases[sample_rate][upsample_rate]:

    bases[2048][()]
        = [bank0slice0, bank1slice0, bank2slice0]
    bases[1024][(2048,)]
        = [bank0slice1, bank1slice1]
    bases[512][(2048, 1024)]
        = [bank0slice2, bank0slice3, bank1slice2]
        # templates in the same bank will be placed next to each other,
            to allow more convenient summing in sum_same_rates()

    bases[512][(2048,)]
        = [bank2slice1]
    bases[256][(2048, 1024, 512)]
        = [bank1slice3]
    bases[256][(2048, 512)]
        = [bank2slice2]

    * The reason that bases[512][(2048, 1024)] is in a different group than
        bases[512][(2048,)] is because they will go into different upsamplers
    * The reason that bases[256][(2048, 1024, 512)] is in a different group
        than bases[256][(2048, 512)], even though they are upsampling to the
        same rate (512), is because due to the different upsampling path
        256->512->1024->2048 vs. 256->512->2048, the time stamps of the buffers
        will be different (to account for the upsampling padding)

    ----------

    sorted_rates = {
        from_rate: {
            to_rate: {
                '_ids_counter':,
                '_addto_counter':,
                '_addids':,
                'counts':,
                'nbmax':,
                'ntempmax':,
                'segments':,
                'sum_same_rate_slices':,
                'uppad':,
                'addslice':,
                'metadata': {
                     bank_order: {
                         'ids':,'nslice':,
                     }
                },
            }
        }
    }

    """

    ifos = bank_metadata["ifos"]
    bank0 = bank[ifos[0]]
    nsubbank = len(bank0)  # number of subbanks in each ifo
    unique_rates = bank_metadata["unique_rates"]
    maxrate = bank_metadata["maxrate"]

    #
    # Sort the unique rates, this might alter the order of the template banks
    #
    sorted_unique_rates0 = []
    unique_rates_by_bank = []
    for j in range(nsubbank):
        bk = bank0[j]
        if self.nsubbank_pretend:
            bankid = bk.bank_id + "_" + str(j)
        else:
            bankid = bk.bank_id
        unique_rates0 = dict(
            sorted(
                Counter([bi.rate for bi in bk.bank_fragments]).items(), reverse=True
            )
        )
        unique_rates_by_bank.append(tuple(unique_rates0.keys()))
        # for key in unique_rates:
        #    if key not in unique_rates0:
        #        unique_rates0[key] = 0
        unique_rates0["bankid"] = bankid
        sorted_unique_rates0.append(unique_rates0)

    # sorted_unique_rates = sorted(
    #    # sorted_unique_rates, key=lambda x: x.keys(), reverse=True
    #    sorted_unique_rates,
    #    key=operator.itemgetter(*list(unique_rates.keys())),
    #    reverse=True,
    # )

    unique_rates_by_bank = sorted(set(unique_rates_by_bank), reverse=True)
    sorted_unique_rates = []

    for urb in unique_rates_by_bank:
        for s in sorted_unique_rates0:
            s2 = list(s.keys())
            s2.remove("bankid")
            if list(urb) == s2 and s not in sorted_unique_rates:
                sorted_unique_rates.append(s)

    # if self.nsubbank_pretend:
    #    sorted_unique_rates *= self.nsubbank_pretend

    if self.verbose:
        print("sorted_unique_rates", flush=True, file=sys.stderr)
        for a in sorted_unique_rates:
            print(a, flush=True, file=sys.stderr)

    # check if nsubbank_pretend is true
    # bankids = [a["bankid"] for a in sorted_unique_rates]
    # nsubbank_pretend = False
    # if len(bankids) > 1 and len(set(bankids)) == 1:
    #    if self.verbose:
    #        print("nsubbank_pretend", flush=True, file=sys.stderr)
    #    nsubbank_pretend = True

    # reorder bankid
    bankid_order = {}
    for i, a in enumerate(sorted_unique_rates):
        bankid = a["bankid"]
        bankid_order[bankid] = i

    reorder = {}
    # reordered bank
    if self.nsubbank_pretend == 0:
        for ifo in ifos:
            reorder[ifo] = {}
            for j in range(nsubbank):
                bk = bank[ifo][j]
                bankid = bk.bank_id
                order = bankid_order[bankid]
                reorder[ifo][order] = bk
    else:
        if self.verbose:
            print("nsubbank_pretend", flush=True, file=sys.stderr)
        for ifo in ifos:
            reorder[ifo] = {i: b for i, b in enumerate(bank[ifo])}

    #
    # Construct sorted_rates, determine id placement of timeslices
    #
    sorted_rates = defaultdict(dict)
    addto_ids = {}
    for a in sorted_unique_rates:
        temp = {}
        for from_rate in unique_rates:
            from_bank = sorted_rates[from_rate]
            bankid = a["bankid"]
            k = list(a.keys())
            if from_rate in k and a[from_rate] > 0:
                to_rate = tuple(
                    ki
                    for ki in k
                    if type(ki) is int and ki > from_rate and a[ki] > 0
                )
                if to_rate not in from_bank:
                    from_bank[to_rate] = {
                        "_ids_counter": 0,
                        "_addto_counter": 0,
                        "_addids": [],
                        "counts": 0,
                        "nbmax": [],
                        "ntempmax": [],
                        "segments": [],
                        "sum_same_rate_slices": None,
                        "metadata": {},
                    }
                to_bank = from_bank[to_rate]
                if from_rate != maxrate:
                    to_bank["counts"] += a[from_rate]
                temp[from_rate] = to_bank["_addto_counter"]
                to_bank["_addto_counter"] += 1
        addto_ids[bankid] = temp

    # find the ids each bank should addto after upsampling
    # FIXME: is there a more elegant way?
    for _bankid, a in addto_ids.items():
        for from_rate in unique_rates:
            from_bank = sorted_rates[from_rate]
            k = list(a.keys())
            if from_rate in k:
                to_rate = tuple(
                    ki for ki in k if type(ki) is int and ki > from_rate
                )
                if from_rate != maxrate:
                    from_bank[to_rate]["_addids"].append(a[to_rate[-1]])

    sorted_rates[maxrate][()]["counts"] = nsubbank

    urates = list(unique_rates.keys())
    downpads = {r: None for r in urates}
    downpad = 0
    downpads[2048] = 0
    for urate in urates[1:]:
        downpad += Offset.fromsamples(DOWN_HALF_LENGTH, urate)
        downpads[urate] = downpad

    # loop over all subbanks and update metadata in each rate group
    for j in range(nsubbank):
        bk = reorder[ifos[0]][j]
        rates = [bf.rate for bf in bk.bank_fragments]
        # urates = np.array(sorted(set(rates), reverse=True))
        urates = list(sorted(set(rates), reverse=True))
        urs = urates[1:]
        # uppad = {
        # #r0: sum(Offset.fromsamples(UP_HALF_LENGTH, ri) for ri in urs[urs >= r0])
        # r0: sum([Offset.fromsamples(UP_HALF_LENGTH, ri) for ri in urs[urs >= r0]])
        # for r0 in urs
        # }
        uppads = {r: None for r in urates}
        uppad = 0
        uppads[maxrate] = 0
        for ri in urs:
            uppad += Offset.fromsamples(UP_HALF_LENGTH, ri)
            uppads[ri] = uppad

        for bi, bf in enumerate(bk.bank_fragments):
            rate = bf.rate
            to_rate = tuple(r for r in urates if r > rate)
            rate_group = sorted_rates[rate][to_rate]
            if j not in rate_group["metadata"]:
                rate_group["metadata"][j] = {
                    "ids": [],
                    "nslice": [],
                }
            mdata = rate_group["metadata"][j]
            mdata["bankid"] = bk.bank_id
            mdata["nslice"].append(bi)
            rate_group["uppad"] = uppads[rate]
            rate_group["downpad"] = downpads[rate]
            rate_group["shift"] = uppads[rate] + downpads[rate]
            rate_group["segments"].append((bf.start, bf.end))
            if rate != maxrate:
                if rate == rates[bi - 1]:
                    mdata["ids"].append(rate_group["_ids_counter"])
                    rate_group["_ids_counter"] += 1
                    if len(mdata["ids"]) > 1:
                        rate_group["sum_same_rate_slices"] = []
                else:
                    mdata["ids"].append(rate_group["_ids_counter"])
                    rate_group["_ids_counter"] += 1
            else:
                mdata["ids"] = [j]

    for ifo in ifos:
        for j in range(nsubbank):
            bk = reorder[ifo][j]
            rates = [bf.rate for bf in bk.bank_fragments]
            for bf in bk.bank_fragments:
                rate = bf.rate
                urates = np.array(sorted(set(rates), reverse=True))
                to_rate = tuple(r for r in urates if r > rate)
                rate_group = sorted_rates[rate][to_rate]
                rate_group["nbmax"].append(bf.mix_matrix.shape[0])
                rate_group["ntempmax"].append(bf.mix_matrix.shape[1])

    for from_rate, v in sorted_rates.items():
        for _to_rate, rate_group in v.items():
            if from_rate != maxrate:
                addids = rate_group["_addids"]
                rate_group["addslice"] = slice(addids[0], addids[-1] + 1)
            rate_group["nbmax"] = max(rate_group["nbmax"])
            rate_group["ntempmax"] = max(rate_group["ntempmax"])
            mdata = rate_group["metadata"]
            if rate_group["sum_same_rate_slices"] is not None:
                for md in mdata.values():
                    ids = md["ids"]
                    rate_group["sum_same_rate_slices"].append(
                        slice(ids[0], ids[-1] + 1)
                    )

    return sorted_rates, reorder

group_and_read_banks(svd_bank, source_ifos=None, nsubbank_pretend=0, nslice=-1, verbose=False)

Read a list of svd banks file names into bank objects, group by ifo and bankid

Source code in sgnl/sort_bank.py
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
def group_and_read_banks(
    svd_bank, source_ifos=None, nsubbank_pretend=0, nslice=-1, verbose=False
):
    """
    Read a list of svd banks file names into bank objects,
    group by ifo and bankid
    """
    # Read SVD banks
    svd_bank_cache = [CacheEntry.from_T050017(path) for path in svd_bank]
    svd_bank_cache.sort(key=lambda cache_entry: cache_entry.description)
    svd_banks = []

    for _key, seq in itertools.groupby(
        svd_bank_cache, key=lambda cache_entry: cache_entry.description
    ):
        svd_group = dict(
            (cache_entry.observatory, cache_entry.url) for cache_entry in seq
        )
        svd_banks.append(svd_group)

    ifoset = set([tuple(s.keys()) for s in svd_banks])
    if len(ifoset) != 1:
        raise ValueError("The ifos have different sets of svd bank files provided.")

    ifos = list(list(ifoset)[0])
    if source_ifos and ifos != source_ifos:
        raise ValueError(
            f"Data source ifos must be the same as svd bank ifos. {source_ifos} {ifos}"
        )

    banks = {ifo: [] for ifo in ifos}
    if nsubbank_pretend:
        # Pretend we are filtering multiple banks by copying the first bank
        #   many times
        svd_bank_url_dict = svd_banks[0]
        banks_per_svd = parse_bank_files(svd_bank_url_dict, verbose=verbose)
        for _ in range(nsubbank_pretend):
            for ifo in ifos:
                banks[ifo].extend([banks_per_svd[ifo][0]])
    else:
        for svd_bank_url_dict in svd_banks:
            if verbose:
                print(svd_bank_url_dict, flush=True, file=sys.stderr)
            banks_per_svd = parse_bank_files(svd_bank_url_dict, verbose=verbose)
            for ifo in ifos:
                banks[ifo].extend(banks_per_svd[ifo])

    # TODO: fix nslice reading
    if nslice > 0:
        for ifo in ifos:
            bifo = banks[ifo]
            for sub in bifo:
                sub.bank_fragments = sub.bank_fragments[:nslice]

    if verbose:
        print("Using nsubbanks", len(banks[ifo]), flush=True, file=sys.stderr)

    return banks