Skip to content

sgnl.bin.ll_inspiral_event_uploader

an executable to aggregate and upload GraceDB events from sgnl-inspiral jobs

EventUploader

Bases: EventProcessor

manages handling of incoming events, selecting the best and uploading to GraceDB.

Source code in sgnl/bin/ll_inspiral_event_uploader.py
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
class EventUploader(events.EventProcessor):
    """
    manages handling of incoming events, selecting the best and uploading to GraceDB.
    """

    _name = "event_uploader"

    def __init__(
        self,
        input_topic,
        kafka_server,
        logger,
        scald_config,
        far_threshold: float = 3.84e-07,
        far_trials_factor: int = 1,
        gracedb_group: str = "Test",
        gracedb_pipeline: str = "SGNL",
        gracedb_search: str = "LowMass",
        gracedb_service_url: str = DEFAULT_GRACEDB_URL,
        max_event_time: int = 7200,
        max_partitions: int = 10,
        num_jobs: int = 10000,
        processing_cadence: float = 0.1,
        request_timeout: float = 0.2,
        selection_criteria: str = "MAXSNR",
        tag: str = "test",
        upload_cadence_factor: float = 4,
        upload_cadence_type: str = "geometric",
    ):
        self.logger = logger
        self.logger.info("setting up event uploader...")

        self.is_injection_job = input_topic == "inj_events"
        topic_prefix = "" if not self.is_injection_job else "inj_"
        heartbeat_topic = f"sgnl.{tag}.{topic_prefix}event_uploader_heartbeat"
        self.favored_event_topic = f"sgnl.{tag}.{topic_prefix}favored_events"
        self.upload_topic = f"sgnl.{tag}.{topic_prefix}uploads"

        # set up output topics. Note that the uploads topic is special,
        # we use it for the SNR optimizer. We want to divide the work
        # among multiple consumers so we set the number of partitions to
        # 10. This is calculated based on the number of expected g-events
        # within a 5 minute window. FIXME: check this number
        output_topics = [self.favored_event_topic, self.upload_topic]
        self.max_partitions = max_partitions
        num_partitions = [1, self.max_partitions]

        events.EventProcessor.__init__(
            self,
            process_cadence=processing_cadence,
            request_timeout=request_timeout,
            num_messages=num_jobs,
            kafka_server=kafka_server,
            input_topic=f"sgnl.{tag}.{input_topic}",
            output_topic=output_topics,
            topic_partitions=num_partitions,
            tag=tag,
            send_heartbeats=True,
            heartbeat_cadence=60.0,
            heartbeat_topic=heartbeat_topic,
        )

        # initialize timing options
        self.max_event_time = max_event_time
        self.retries = 5
        self.retry_delay = 1

        # initialize gracedb client
        if gracedb_service_url.startswith("file"):
            self.client = FakeGracedbClient(gracedb_service_url)
        else:
            self.client = GraceDb(gracedb_service_url)

        # gracedb settings
        self.gracedb_group = gracedb_group
        self.gracedb_pipeline = gracedb_pipeline
        self.gracedb_search = gracedb_search

        # upload cadence settings
        self.upload_cadence_type = upload_cadence_type
        self.upload_cadence_factor = upload_cadence_factor

        # initialize event store
        self.events = OrderedDict()

        # favored event settings
        if selection_criteria == "MAXSNR":
            self.favored_function = self.select_maxsnr_candidate
        elif selection_criteria == "MINFAR":
            self.favored_function = self.select_minfar_candidate
        else:
            self.favored_function = self.construct_composite_candidate

        self.public_far_threshold = far_threshold / far_trials_factor

        # heartbeat settings
        self.last_inspiral_heartbeat = 0.0
        self.heartbeat_write = utils.gps_now()

        # upload topic settings
        # keep track of the partition that we send messages to
        # so that we can iterate across all partitions evenly
        # start with 0, iterate up to self.max_partitions - 1, and repeat
        self.partition_key = 0

        # set up aggregator sink
        with open(scald_config, "r") as f:
            agg_config = yaml.safe_load(f)
        self.agg_sink = influx.Aggregator(**agg_config["backends"]["default"])

        # register measurement schemas for aggregators
        self.agg_sink.load(path=scald_config)

    def ingest(self, message):
        """
        parse a message containing a candidate event
        """
        # process heartbeat messages from inspiral jobs
        if message.key() and "heartbeat" == message.key().decode("UTF-8"):
            heartbeat = json.loads(message.value())
            if heartbeat["time"] > self.last_inspiral_heartbeat:
                self.last_inspiral_heartbeat = heartbeat["time"]

        # process candidate event
        else:
            candidate = json.loads(message.value())
            candidate["time"] = LIGOTimeGPS(candidate["time"], candidate.pop("time_ns"))
            candidate.update(self.trigger_info(candidate))
            self.process_candidate(candidate)

    def process_candidate(self, candidate):
        """
        handles the processing of a candidate, creating
        a new event if necessary
        """
        key = self.event_window(candidate["time"])
        if key in self.events:
            self.logger.info("adding new candidate for event: [%.1f, %.1f]", *key)
            self.events[key]["candidates"].append(candidate)
            self.update_trigger_history(key, candidate)
        else:
            new_event = True
            for seg, event in self.events.items():
                if segment(candidate["time"], candidate["time"]) in seg:
                    self.logger.info(
                        "adding new candidate for time window: [%.1f, %.1f]", *seg
                    )
                    event["candidates"].append(candidate)
                    self.update_trigger_history(seg, candidate)
                    new_event = False

            # event not found, create a new event
            if new_event:
                self.logger.info("found new event: [%.1f, %.1f]", *key)
                self.events[key] = self.new_event()
                self.events[key]["candidates"].append(candidate)
                self.update_trigger_history(key, candidate)

    def update_trigger_history(self, key, candidate):
        """
        update trigger history dict for each candidate
        """
        self.events[key]["trigger_history"].update(candidate["trigger_info"])

    def trigger_info(self, candidate):
        """
        gather trigger information for each candidate,
        used for rtpe
        """
        # parse candidate for SVD bin, masses, LR, and SNR
        svdbin, type = self.parse_job_tag(candidate["job_tag"])

        coinc = self.load_xmlobj(candidate["coinc"])
        coinc_row = lsctables.CoincTable.get_table(coinc)[0]
        snglinspiral_row = lsctables.SnglInspiralTable.get_table(coinc)[0]

        return {
            "trigger_info": {
                svdbin: {
                    "snr": candidate["snr"],
                    "likelihood": coinc_row.likelihood,
                    "mass1": snglinspiral_row.mass1,
                    "mass2": snglinspiral_row.mass2,
                    "spin1z": snglinspiral_row.spin1z,
                    "spin2z": snglinspiral_row.spin2z,
                    "Gamma0": snglinspiral_row.Gamma0,
                }
            }
        }

    def parse_job_tag(self, tag):
        """
        get svd bin and job type from job tag
        """
        svdbin = tag.split("_")[0]
        name = "_".join(tag.split("_")[1:])
        return svdbin, name

    def load_xmlobj(self, xmlobj):
        """
        returns the coinc xml object from the kafka message
        """
        if isinstance(xmlobj, str):
            xmlobj = BytesIO(xmlobj.encode("utf-8"))
        return ligolw_utils.load_fileobj(xmlobj, contenthandler=LIGOLWContentHandler)

    def event_window(self, t):
        """
        returns the event window representing the event
        """
        dt = 0.2
        return segment(utils.floor_div(t - dt, 0.5), utils.floor_div(t + dt, 0.5) + 0.5)

    def new_event(self):
        """
        returns the structure that defines an event
        """
        return {
            "num_sent": 0,
            "time_sent": None,
            "favored": None,
            "gid": None,
            "candidates": deque(maxlen=self.num_messages),
            "trigger_history": {},
        }

    def handle(self):
        """
        handle events stored, selecting the best candidate.
        upload if a new favored event is found
        """
        for key, event in sorted(self.events.items(), reverse=True):
            if (
                event["num_sent"] == 0
                or event["candidates"]
                and (
                    (utils.gps_now() >= self.next_event_upload(event))
                    or (
                        event["favored"]["far"] > self.public_far_threshold
                        and any(
                            [
                                candidate["far"] <= self.public_far_threshold
                                for candidate in event["candidates"]
                            ]
                        )
                    )
                )
            ):
                self.logger.info(
                    "handle: process_event num %d [%.1f, %.1f]",
                    len(event["candidates"]),
                    *key,
                )
                self.process_event(event, key)

        # clean out old events
        current_time = utils.gps_now()
        for key in list(self.events.keys()):
            if current_time - key[0] >= self.max_event_time:
                self.logger.info(
                    "sending final trigger history for event [%.1f, %.1f]", *key
                )
                self.upload_file(
                    "Trigger history file for RTPE",
                    "trigger_history.json",
                    "trigger_history",
                    json.dumps(self.events[key]["trigger_history"]),
                    self.events[key]["gid"],
                )
                self.logger.info("removing stale event [%.1f, %.1f]", *key)
                self.events.pop(key)

        # has it been more than 15 minutes since last inspiral heartbeat
        # jobs should send heartbeats every 10 minutes
        now = utils.gps_now()
        if now - self.heartbeat_write > 15 * 60:
            state = 0 if now - self.last_inspiral_heartbeat > 15 * 60 else 1
            data = {
                "heartbeat": {
                    "heartbeat_tag": {"time": [int(now)], "fields": {"data": [state]}}
                }
            }

            self.logger.debug("Storing heartbeat state %d to influx...", state)
            self.agg_sink.store_columns("heartbeat", data["heartbeat"], aggregate=None)
            self.heartbeat_write = now

    def process_event(self, event, window):
        """
        handle a single event, selecting the best candidate.
        upload if a new favored event is found
        """
        updated, event = self.process_candidates(event)
        if event["num_sent"] == 0:
            assert updated
        if updated:
            self.logger.info(
                "uploading %s candidate with FAR = %.3E, "
                "SNR = %2.1f for event: [%.1f, %.1f]",
                self.to_ordinal(event["num_sent"] + 1),
                event["favored"]["far"],
                event["favored"]["snr"],
                window[0],
                window[1],
            )
            gid = self.upload_event(event)
            self.send_favored_event(event, window)
            if gid:
                event["num_sent"] += 1
                event["gid"] = gid
                self.send_uploaded(event, gid)

    def process_candidates(self, event):
        """
        process candidates and update the favored (maxsnr) event
        if needed

        returns event and whether the favored (maxsnr) event was updated
        """
        updated, this_favored = self.favored_function(
            event["candidates"], event["favored"]
        )

        if updated:
            event["favored"] = this_favored

        event["candidates"].clear()

        return updated, event

    def construct_composite_candidate(self, candidates, favored):
        """
        Construct composite event. Replace far and likelihood
        in maxsnr candidate with those in the minfar candidate.
        """

        # add previous favored event to list so we can get
        # the overall min FAR and max SNR instead of just
        # over the new candidates
        if favored:
            candidates.append(favored)

        maxsnr_candidate = max(candidates, key=self.rank_snr)
        maxsnr = maxsnr_candidate["snr"]

        minfar_candidate = min(candidates, key=self.rank_far)
        minfar = minfar_candidate["far"]

        # if neither the FAR nor SNR have improved compared to
        # the previous favored, no update. Otherwise, make
        # composite event and send an update
        if favored and maxsnr <= favored["snr"] and minfar >= favored["far"]:
            return False, favored
        else:
            # construct composite event
            if maxsnr_candidate["far"] != minfar:
                self.logger.info(
                    "construct new composite event with FAR: %.3E, " "SNR: %2.3f",
                    minfar,
                    maxsnr_candidate["snr"],
                )

                # replace far
                maxsnr_candidate["far"] = minfar

                # load coinc file
                maxsnr_coinc_row, maxsnr_coinc_file = self.get_coinc_row(
                    maxsnr_candidate
                )
                minfar_coinc_row, minfar_coinc_file = self.get_coinc_row(
                    minfar_candidate
                )

                # update likelihood and far
                maxsnr_coinc_row.likelihood = minfar_coinc_row.likelihood
                maxsnr_coinc_row.combined_far = minfar

                # save coinc file
                coinc_obj = BytesIO()
                ligolw_utils.write_fileobj(maxsnr_coinc_file, coinc_obj)
                maxsnr_candidate["coinc"] = coinc_obj.getvalue().decode("utf-8")

            if favored:
                assert (
                    maxsnr_candidate["far"] <= favored["far"]
                ), "composite event FAR should be smaller than previous favored FAR"
                assert (
                    maxsnr_candidate["snr"] >= favored["snr"]
                ), "composite event SNR should be larger than previous favored SNR"

            return True, maxsnr_candidate

    def select_maxsnr_candidate(self, candidates, favored=None):
        """
        select max snr candidate from candidates below
        public alert threshold:
        """
        # select the best candidate
        new_favored = max(candidates, key=self.rank_candidate)
        if not favored:
            return True, new_favored
        elif self.rank_candidate(new_favored) > self.rank_candidate(favored):
            return True, new_favored
        else:
            return False, favored

    def select_minfar_candidate(self, candidates, favored=None):
        """
        select the min far candidate out of the candidates
        """
        minfar_candidate = min(candidates, key=self.rank_far)
        if favored and minfar_candidate["far"] >= favored["far"]:
            return False, minfar_candidate
        else:
            return True, minfar_candidate

    def rank_candidate(self, candidate):
        """
        rank a candidate based on the following criterion:
        * FAR >  public threshold, choose lowest FAR
        * FAR <= public threshold, choose highest SNR
        """
        if candidate["far"] <= self.public_far_threshold:
            return True, candidate["snr"], 1.0 / candidate["far"]
        else:
            return False, 1.0 / candidate["far"], candidate["snr"]

    @staticmethod
    def rank_snr(candidate):
        return candidate["snr"]

    @staticmethod
    def rank_far(candidate):
        return candidate["far"]

    def send_favored_event(self, event, event_window):
        """
        send a favored event via Kafka
        """
        favored_event = {
            "event_window": list(event_window),
            "time": event["favored"]["time"].gpsSeconds,
            "time_ns": event["favored"]["time"].gpsNanoSeconds,
            "snr": event["favored"]["snr"],
            "far": event["favored"]["far"],
            "coinc": event["favored"]["coinc"],
        }
        self.producer.produce(
            topic=self.favored_event_topic, value=json.dumps(favored_event)
        )
        self.producer.poll(0)

    def send_uploaded(self, event, gid):
        """
        send an uploaded event via Kafka
        """
        uploaded = {
            "gid": gid,
            "time": event["favored"]["time"].gpsSeconds,
            "time_ns": event["favored"]["time"].gpsNanoSeconds,
            "snr": event["favored"]["snr"],
            "far": event["favored"]["far"],
            "coinc": event["favored"]["coinc"],
            "is_injection": self.is_injection_job,
            "snr_optimized": (
                True
                if "snr_optimized" in event["favored"]
                and event["favored"]["snr_optimized"]
                else False
            ),  # prevents re-triggering of the optimizer
        }

        # iterate the key so the next message goes to a different partition
        if self.partition_key >= self.max_partitions:
            self.partition_key = 0
        self.producer.produce(
            topic=self.upload_topic,
            value=json.dumps(uploaded),
            partition=self.partition_key,
        )
        self.partition_key += 1
        self.producer.poll(0)

    def upload_event(self, event):
        """
        upload a new event + auxiliary files
        """
        # upload event
        for attempt in range(1, self.retries + 1):
            try:
                resp = self.client.createEvent(
                    group=self.gracedb_group,
                    pipeline=self.gracedb_pipeline,
                    filename="coinc.xml",
                    filecontents=event["favored"]["coinc"],
                    search=self.gracedb_search,
                    offline=False,
                    labels=(
                        "SNR_OPTIMIZED"
                        if "apply_snr_optimized_label" in event["favored"]
                        and event["favored"]["apply_snr_optimized_label"]
                        else None
                    ),
                    # don't apply the SNR_OPTIMIZED label for skymap optimizer events
                )
            except HTTPError:
                self.logger.exception("upload_event:HTTPError")
            else:
                resp_json = resp.json()
                if resp.status == httplib.CREATED:
                    graceid = resp_json["graceid"]
                    self.logger.info("event assigned grace ID %s", graceid)
                    if not event["time_sent"]:
                        event["time_sent"] = utils.gps_now()
                    break
            self.logger.warning(
                "gracedb upload of %s " "failed on attempt %d/%d",
                "coinc.xml",
                attempt,
                self.retries,
            )
            time.sleep(numpy.random.lognormal(math.log(self.retry_delay), 0.5))
        else:
            self.logger.warning("gracedb upload of %s failed", "coinc.xml")
            return None

        self.upload_file(
            "Trigger history file for RTPE",
            "trigger_history.json",
            "trigger_history",
            json.dumps(event["trigger_history"]),
            graceid,
        )

        return graceid

    def upload_file(self, message, filename, tag, contents, graceid):
        """
        upload a file to gracedb
        """
        self.logger.info("posting %s to gracedb ID %s", filename, graceid)
        for attempt in range(1, self.retries + 1):
            try:
                resp = self.client.writeLog(
                    graceid,
                    message,
                    filename=filename,
                    filecontents=contents,
                    tagname=tag,
                )
            except HTTPError:
                self.logger.exception("upload_file:HTTPError")
            else:
                if resp.status == httplib.CREATED:
                    break
            self.logger.warning(
                "gracedb upload of %s for ID %s " "failed on attempt %d/%d",
                filename,
                graceid,
                attempt,
                self.retries,
            )
            time.sleep(numpy.random.lognormal(math.log(self.retry_delay), 0.5))
        else:
            self.logger.warning(
                "gracedb upload of %s for ID %s failed", filename, graceid
            )

            return False

    def next_event_upload(self, event):
        """
        check whether enough time has elapsed to send an updated event
        """
        if self.upload_cadence_type == "geometric":
            return event["time_sent"] + numpy.power(
                self.upload_cadence_factor, event["num_sent"]
            )
        elif self.upload_cadence_type == "linear":
            return event["time_sent"] + self.upload_cadence_factor * event["num_sent"]

    def finish(self):
        """
        send remaining events before shutting down
        """
        for key, event in sorted(self.events.items(), reverse=True):
            if event["candidates"]:
                self.process_event(event, key)

    @staticmethod
    def to_ordinal(n):
        """
        given an integer, returns the ordinal number
        representation.

        this black magic is taken from
        https://stackoverflow.com/a/20007730
        """
        return "%d%s" % (n, "tsnrhtdd"[(n / 10 % 10 != 1) * (n % 10 < 4) * n % 10 :: 4])

    def get_coinc_row(self, event):
        coinc_file = self.load_xmlobj(event["coinc"])
        return lsctables.CoincTable.get_table(coinc_file)[0], coinc_file

construct_composite_candidate(candidates, favored)

Construct composite event. Replace far and likelihood in maxsnr candidate with those in the minfar candidate.

Source code in sgnl/bin/ll_inspiral_event_uploader.py
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def construct_composite_candidate(self, candidates, favored):
    """
    Construct composite event. Replace far and likelihood
    in maxsnr candidate with those in the minfar candidate.
    """

    # add previous favored event to list so we can get
    # the overall min FAR and max SNR instead of just
    # over the new candidates
    if favored:
        candidates.append(favored)

    maxsnr_candidate = max(candidates, key=self.rank_snr)
    maxsnr = maxsnr_candidate["snr"]

    minfar_candidate = min(candidates, key=self.rank_far)
    minfar = minfar_candidate["far"]

    # if neither the FAR nor SNR have improved compared to
    # the previous favored, no update. Otherwise, make
    # composite event and send an update
    if favored and maxsnr <= favored["snr"] and minfar >= favored["far"]:
        return False, favored
    else:
        # construct composite event
        if maxsnr_candidate["far"] != minfar:
            self.logger.info(
                "construct new composite event with FAR: %.3E, " "SNR: %2.3f",
                minfar,
                maxsnr_candidate["snr"],
            )

            # replace far
            maxsnr_candidate["far"] = minfar

            # load coinc file
            maxsnr_coinc_row, maxsnr_coinc_file = self.get_coinc_row(
                maxsnr_candidate
            )
            minfar_coinc_row, minfar_coinc_file = self.get_coinc_row(
                minfar_candidate
            )

            # update likelihood and far
            maxsnr_coinc_row.likelihood = minfar_coinc_row.likelihood
            maxsnr_coinc_row.combined_far = minfar

            # save coinc file
            coinc_obj = BytesIO()
            ligolw_utils.write_fileobj(maxsnr_coinc_file, coinc_obj)
            maxsnr_candidate["coinc"] = coinc_obj.getvalue().decode("utf-8")

        if favored:
            assert (
                maxsnr_candidate["far"] <= favored["far"]
            ), "composite event FAR should be smaller than previous favored FAR"
            assert (
                maxsnr_candidate["snr"] >= favored["snr"]
            ), "composite event SNR should be larger than previous favored SNR"

        return True, maxsnr_candidate

event_window(t)

returns the event window representing the event

Source code in sgnl/bin/ll_inspiral_event_uploader.py
386
387
388
389
390
391
def event_window(self, t):
    """
    returns the event window representing the event
    """
    dt = 0.2
    return segment(utils.floor_div(t - dt, 0.5), utils.floor_div(t + dt, 0.5) + 0.5)

finish()

send remaining events before shutting down

Source code in sgnl/bin/ll_inspiral_event_uploader.py
761
762
763
764
765
766
767
def finish(self):
    """
    send remaining events before shutting down
    """
    for key, event in sorted(self.events.items(), reverse=True):
        if event["candidates"]:
            self.process_event(event, key)

handle()

handle events stored, selecting the best candidate. upload if a new favored event is found

Source code in sgnl/bin/ll_inspiral_event_uploader.py
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
def handle(self):
    """
    handle events stored, selecting the best candidate.
    upload if a new favored event is found
    """
    for key, event in sorted(self.events.items(), reverse=True):
        if (
            event["num_sent"] == 0
            or event["candidates"]
            and (
                (utils.gps_now() >= self.next_event_upload(event))
                or (
                    event["favored"]["far"] > self.public_far_threshold
                    and any(
                        [
                            candidate["far"] <= self.public_far_threshold
                            for candidate in event["candidates"]
                        ]
                    )
                )
            )
        ):
            self.logger.info(
                "handle: process_event num %d [%.1f, %.1f]",
                len(event["candidates"]),
                *key,
            )
            self.process_event(event, key)

    # clean out old events
    current_time = utils.gps_now()
    for key in list(self.events.keys()):
        if current_time - key[0] >= self.max_event_time:
            self.logger.info(
                "sending final trigger history for event [%.1f, %.1f]", *key
            )
            self.upload_file(
                "Trigger history file for RTPE",
                "trigger_history.json",
                "trigger_history",
                json.dumps(self.events[key]["trigger_history"]),
                self.events[key]["gid"],
            )
            self.logger.info("removing stale event [%.1f, %.1f]", *key)
            self.events.pop(key)

    # has it been more than 15 minutes since last inspiral heartbeat
    # jobs should send heartbeats every 10 minutes
    now = utils.gps_now()
    if now - self.heartbeat_write > 15 * 60:
        state = 0 if now - self.last_inspiral_heartbeat > 15 * 60 else 1
        data = {
            "heartbeat": {
                "heartbeat_tag": {"time": [int(now)], "fields": {"data": [state]}}
            }
        }

        self.logger.debug("Storing heartbeat state %d to influx...", state)
        self.agg_sink.store_columns("heartbeat", data["heartbeat"], aggregate=None)
        self.heartbeat_write = now

ingest(message)

parse a message containing a candidate event

Source code in sgnl/bin/ll_inspiral_event_uploader.py
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
def ingest(self, message):
    """
    parse a message containing a candidate event
    """
    # process heartbeat messages from inspiral jobs
    if message.key() and "heartbeat" == message.key().decode("UTF-8"):
        heartbeat = json.loads(message.value())
        if heartbeat["time"] > self.last_inspiral_heartbeat:
            self.last_inspiral_heartbeat = heartbeat["time"]

    # process candidate event
    else:
        candidate = json.loads(message.value())
        candidate["time"] = LIGOTimeGPS(candidate["time"], candidate.pop("time_ns"))
        candidate.update(self.trigger_info(candidate))
        self.process_candidate(candidate)

load_xmlobj(xmlobj)

returns the coinc xml object from the kafka message

Source code in sgnl/bin/ll_inspiral_event_uploader.py
378
379
380
381
382
383
384
def load_xmlobj(self, xmlobj):
    """
    returns the coinc xml object from the kafka message
    """
    if isinstance(xmlobj, str):
        xmlobj = BytesIO(xmlobj.encode("utf-8"))
    return ligolw_utils.load_fileobj(xmlobj, contenthandler=LIGOLWContentHandler)

new_event()

returns the structure that defines an event

Source code in sgnl/bin/ll_inspiral_event_uploader.py
393
394
395
396
397
398
399
400
401
402
403
404
def new_event(self):
    """
    returns the structure that defines an event
    """
    return {
        "num_sent": 0,
        "time_sent": None,
        "favored": None,
        "gid": None,
        "candidates": deque(maxlen=self.num_messages),
        "trigger_history": {},
    }

next_event_upload(event)

check whether enough time has elapsed to send an updated event

Source code in sgnl/bin/ll_inspiral_event_uploader.py
750
751
752
753
754
755
756
757
758
759
def next_event_upload(self, event):
    """
    check whether enough time has elapsed to send an updated event
    """
    if self.upload_cadence_type == "geometric":
        return event["time_sent"] + numpy.power(
            self.upload_cadence_factor, event["num_sent"]
        )
    elif self.upload_cadence_type == "linear":
        return event["time_sent"] + self.upload_cadence_factor * event["num_sent"]

parse_job_tag(tag)

get svd bin and job type from job tag

Source code in sgnl/bin/ll_inspiral_event_uploader.py
370
371
372
373
374
375
376
def parse_job_tag(self, tag):
    """
    get svd bin and job type from job tag
    """
    svdbin = tag.split("_")[0]
    name = "_".join(tag.split("_")[1:])
    return svdbin, name

process_candidate(candidate)

handles the processing of a candidate, creating a new event if necessary

Source code in sgnl/bin/ll_inspiral_event_uploader.py
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def process_candidate(self, candidate):
    """
    handles the processing of a candidate, creating
    a new event if necessary
    """
    key = self.event_window(candidate["time"])
    if key in self.events:
        self.logger.info("adding new candidate for event: [%.1f, %.1f]", *key)
        self.events[key]["candidates"].append(candidate)
        self.update_trigger_history(key, candidate)
    else:
        new_event = True
        for seg, event in self.events.items():
            if segment(candidate["time"], candidate["time"]) in seg:
                self.logger.info(
                    "adding new candidate for time window: [%.1f, %.1f]", *seg
                )
                event["candidates"].append(candidate)
                self.update_trigger_history(seg, candidate)
                new_event = False

        # event not found, create a new event
        if new_event:
            self.logger.info("found new event: [%.1f, %.1f]", *key)
            self.events[key] = self.new_event()
            self.events[key]["candidates"].append(candidate)
            self.update_trigger_history(key, candidate)

process_candidates(event)

process candidates and update the favored (maxsnr) event if needed

returns event and whether the favored (maxsnr) event was updated

Source code in sgnl/bin/ll_inspiral_event_uploader.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
def process_candidates(self, event):
    """
    process candidates and update the favored (maxsnr) event
    if needed

    returns event and whether the favored (maxsnr) event was updated
    """
    updated, this_favored = self.favored_function(
        event["candidates"], event["favored"]
    )

    if updated:
        event["favored"] = this_favored

    event["candidates"].clear()

    return updated, event

process_event(event, window)

handle a single event, selecting the best candidate. upload if a new favored event is found

Source code in sgnl/bin/ll_inspiral_event_uploader.py
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
def process_event(self, event, window):
    """
    handle a single event, selecting the best candidate.
    upload if a new favored event is found
    """
    updated, event = self.process_candidates(event)
    if event["num_sent"] == 0:
        assert updated
    if updated:
        self.logger.info(
            "uploading %s candidate with FAR = %.3E, "
            "SNR = %2.1f for event: [%.1f, %.1f]",
            self.to_ordinal(event["num_sent"] + 1),
            event["favored"]["far"],
            event["favored"]["snr"],
            window[0],
            window[1],
        )
        gid = self.upload_event(event)
        self.send_favored_event(event, window)
        if gid:
            event["num_sent"] += 1
            event["gid"] = gid
            self.send_uploaded(event, gid)

rank_candidate(candidate)

rank a candidate based on the following criterion: * FAR > public threshold, choose lowest FAR * FAR <= public threshold, choose highest SNR

Source code in sgnl/bin/ll_inspiral_event_uploader.py
596
597
598
599
600
601
602
603
604
605
def rank_candidate(self, candidate):
    """
    rank a candidate based on the following criterion:
    * FAR >  public threshold, choose lowest FAR
    * FAR <= public threshold, choose highest SNR
    """
    if candidate["far"] <= self.public_far_threshold:
        return True, candidate["snr"], 1.0 / candidate["far"]
    else:
        return False, 1.0 / candidate["far"], candidate["snr"]

select_maxsnr_candidate(candidates, favored=None)

select max snr candidate from candidates below public alert threshold:

Source code in sgnl/bin/ll_inspiral_event_uploader.py
572
573
574
575
576
577
578
579
580
581
582
583
584
def select_maxsnr_candidate(self, candidates, favored=None):
    """
    select max snr candidate from candidates below
    public alert threshold:
    """
    # select the best candidate
    new_favored = max(candidates, key=self.rank_candidate)
    if not favored:
        return True, new_favored
    elif self.rank_candidate(new_favored) > self.rank_candidate(favored):
        return True, new_favored
    else:
        return False, favored

select_minfar_candidate(candidates, favored=None)

select the min far candidate out of the candidates

Source code in sgnl/bin/ll_inspiral_event_uploader.py
586
587
588
589
590
591
592
593
594
def select_minfar_candidate(self, candidates, favored=None):
    """
    select the min far candidate out of the candidates
    """
    minfar_candidate = min(candidates, key=self.rank_far)
    if favored and minfar_candidate["far"] >= favored["far"]:
        return False, minfar_candidate
    else:
        return True, minfar_candidate

send_favored_event(event, event_window)

send a favored event via Kafka

Source code in sgnl/bin/ll_inspiral_event_uploader.py
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
def send_favored_event(self, event, event_window):
    """
    send a favored event via Kafka
    """
    favored_event = {
        "event_window": list(event_window),
        "time": event["favored"]["time"].gpsSeconds,
        "time_ns": event["favored"]["time"].gpsNanoSeconds,
        "snr": event["favored"]["snr"],
        "far": event["favored"]["far"],
        "coinc": event["favored"]["coinc"],
    }
    self.producer.produce(
        topic=self.favored_event_topic, value=json.dumps(favored_event)
    )
    self.producer.poll(0)

send_uploaded(event, gid)

send an uploaded event via Kafka

Source code in sgnl/bin/ll_inspiral_event_uploader.py
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def send_uploaded(self, event, gid):
    """
    send an uploaded event via Kafka
    """
    uploaded = {
        "gid": gid,
        "time": event["favored"]["time"].gpsSeconds,
        "time_ns": event["favored"]["time"].gpsNanoSeconds,
        "snr": event["favored"]["snr"],
        "far": event["favored"]["far"],
        "coinc": event["favored"]["coinc"],
        "is_injection": self.is_injection_job,
        "snr_optimized": (
            True
            if "snr_optimized" in event["favored"]
            and event["favored"]["snr_optimized"]
            else False
        ),  # prevents re-triggering of the optimizer
    }

    # iterate the key so the next message goes to a different partition
    if self.partition_key >= self.max_partitions:
        self.partition_key = 0
    self.producer.produce(
        topic=self.upload_topic,
        value=json.dumps(uploaded),
        partition=self.partition_key,
    )
    self.partition_key += 1
    self.producer.poll(0)

to_ordinal(n) staticmethod

given an integer, returns the ordinal number representation.

this black magic is taken from https://stackoverflow.com/a/20007730

Source code in sgnl/bin/ll_inspiral_event_uploader.py
769
770
771
772
773
774
775
776
777
778
@staticmethod
def to_ordinal(n):
    """
    given an integer, returns the ordinal number
    representation.

    this black magic is taken from
    https://stackoverflow.com/a/20007730
    """
    return "%d%s" % (n, "tsnrhtdd"[(n / 10 % 10 != 1) * (n % 10 < 4) * n % 10 :: 4])

trigger_info(candidate)

gather trigger information for each candidate, used for rtpe

Source code in sgnl/bin/ll_inspiral_event_uploader.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
def trigger_info(self, candidate):
    """
    gather trigger information for each candidate,
    used for rtpe
    """
    # parse candidate for SVD bin, masses, LR, and SNR
    svdbin, type = self.parse_job_tag(candidate["job_tag"])

    coinc = self.load_xmlobj(candidate["coinc"])
    coinc_row = lsctables.CoincTable.get_table(coinc)[0]
    snglinspiral_row = lsctables.SnglInspiralTable.get_table(coinc)[0]

    return {
        "trigger_info": {
            svdbin: {
                "snr": candidate["snr"],
                "likelihood": coinc_row.likelihood,
                "mass1": snglinspiral_row.mass1,
                "mass2": snglinspiral_row.mass2,
                "spin1z": snglinspiral_row.spin1z,
                "spin2z": snglinspiral_row.spin2z,
                "Gamma0": snglinspiral_row.Gamma0,
            }
        }
    }

update_trigger_history(key, candidate)

update trigger history dict for each candidate

Source code in sgnl/bin/ll_inspiral_event_uploader.py
338
339
340
341
342
def update_trigger_history(self, key, candidate):
    """
    update trigger history dict for each candidate
    """
    self.events[key]["trigger_history"].update(candidate["trigger_info"])

upload_event(event)

upload a new event + auxiliary files

Source code in sgnl/bin/ll_inspiral_event_uploader.py
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
def upload_event(self, event):
    """
    upload a new event + auxiliary files
    """
    # upload event
    for attempt in range(1, self.retries + 1):
        try:
            resp = self.client.createEvent(
                group=self.gracedb_group,
                pipeline=self.gracedb_pipeline,
                filename="coinc.xml",
                filecontents=event["favored"]["coinc"],
                search=self.gracedb_search,
                offline=False,
                labels=(
                    "SNR_OPTIMIZED"
                    if "apply_snr_optimized_label" in event["favored"]
                    and event["favored"]["apply_snr_optimized_label"]
                    else None
                ),
                # don't apply the SNR_OPTIMIZED label for skymap optimizer events
            )
        except HTTPError:
            self.logger.exception("upload_event:HTTPError")
        else:
            resp_json = resp.json()
            if resp.status == httplib.CREATED:
                graceid = resp_json["graceid"]
                self.logger.info("event assigned grace ID %s", graceid)
                if not event["time_sent"]:
                    event["time_sent"] = utils.gps_now()
                break
        self.logger.warning(
            "gracedb upload of %s " "failed on attempt %d/%d",
            "coinc.xml",
            attempt,
            self.retries,
        )
        time.sleep(numpy.random.lognormal(math.log(self.retry_delay), 0.5))
    else:
        self.logger.warning("gracedb upload of %s failed", "coinc.xml")
        return None

    self.upload_file(
        "Trigger history file for RTPE",
        "trigger_history.json",
        "trigger_history",
        json.dumps(event["trigger_history"]),
        graceid,
    )

    return graceid

upload_file(message, filename, tag, contents, graceid)

upload a file to gracedb

Source code in sgnl/bin/ll_inspiral_event_uploader.py
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
def upload_file(self, message, filename, tag, contents, graceid):
    """
    upload a file to gracedb
    """
    self.logger.info("posting %s to gracedb ID %s", filename, graceid)
    for attempt in range(1, self.retries + 1):
        try:
            resp = self.client.writeLog(
                graceid,
                message,
                filename=filename,
                filecontents=contents,
                tagname=tag,
            )
        except HTTPError:
            self.logger.exception("upload_file:HTTPError")
        else:
            if resp.status == httplib.CREATED:
                break
        self.logger.warning(
            "gracedb upload of %s for ID %s " "failed on attempt %d/%d",
            filename,
            graceid,
            attempt,
            self.retries,
        )
        time.sleep(numpy.random.lognormal(math.log(self.retry_delay), 0.5))
    else:
        self.logger.warning(
            "gracedb upload of %s for ID %s failed", filename, graceid
        )

        return False